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ENERGY STABLE FLUX FORMULAS FOR THE DISCONTINUOUS GALERKIN

DISCRETIZATION OF FIRST ORDER NONLINEAR CONSERVATION LAWS

TIMOTHY BARTH* AND PIERRE CHARRIER l

Abstract. We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation

laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the

Euler equations of gasdynamics. For the class of first order nonlinear conservation laws equipped with an entropy extension,

an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several

new variants of existing numerical flux functions are derived and shown to be energy stable.
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I. Introduction. Discontinuous Galerkin (DG) finite element methods for first order hyperbolic equa-

tions were introduced in the early works of Reed and Hill [19] and Johnson and Pitkiiranta [15] with ap-

plication to nonlinear conservation law systems by Cockburn et al. [4, 3, 5]. Fundamental to DG methods

is the use of approximation spaces that are devoid of interelement continuity in both space and time. The

multi-valued representation of the solution at interelement boundaries makes the evaluation of conservation

law fluxes ambiguous thus necessitating the introduction of a numerical flux Junction, h(v_, v+; n), a vector

function of two (or more) solution states and a geometric normal at interelement boundaries. The needed

numerical flux function can have design origins from exact or approximate solutions of the Pdemann problem

of gasdynamics [10, 20, 14]. Alternatively, the numerical flux can be designed from a nonlinear energy anal-
ysis of the DG method for first order nonlinear conservation laws equipped with a convex entropy extension,

see Barth [2, 1]. This latter energy technique is used in the present analysis. Using the notation introduced
in later consideration of the Cauchy initial-value problem, one obtains from this analysis the following exact

energy balance equation for the DG finite element method for a spatial domain f/integrated over N time
slabs

(1.1) 1 [[[ [v]t+ 2 U(tN_) dx U(t°_) dx- II1 .o, 2 + =
2 n=0 _ e_8

energy removal via _ _ rival energy initill energy
diJconti_uoum in lime

energy remov.l via

function reprelenthtion dilcontinuoue in Iplce

function representation

This exact energy balance is derived using either of two different baseline numerical flux functions:

• Symmetric Mean-Value (SMV) Flux

hsMv(v-,v+;n)---- (f(v_)+f(v+))-- _hsMv(v_,v+;n)

with

1h_Mv (v_ , v+; n) -- IA(V(8); n)bio dO [v]+__

• Kinetic Symmetric Mean-Value (KSMV) Flux

hKSMV(V-,v+;n) = (f(v_)+f(v+))-- _hKsMv(v_,v+;n )
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with

dhKSMV(V-, v+; n) = (Iv. nlm®m exp (V(0) • m(v)))dO[v] +

where (.) denotes an integration in velocity-internal energy phase space and re(v) the vector of moments as

discussed later. Observe that the nonlinear energy balance (1.1) formally bounds the final solution in terms

of initial data. The discontinuous function space leads to energy remo_"al in space and time proportional to

the matrix modulated square of solution jumps across the respective space and time interfaces.

In general, the numerical flux functions given here are too complex to permit the calculation of the needed

path integrations in closed form. Our strategy in this paper is to first develop the framework and theoretical

results given above• We then shift to our main objective, the development of approximate numerical flux

functions, happrox(V-,V+; la), that avoid these complicated path integrations without compromising our

ability to rigorously prove nonlinear stability• This is accomplished by requiring that the approximate
numerical flux formulas are more energy dissipative than the theoretically derived fluxes given above. This

task can be reduced to the satisfaction of either of two algebraic sufficient conditions (derived later)

v "_+ < [v]:+_[L_ dhSM v _ or [v]_ + d• hKSMV < [V]_+happrox• . . happrox •

We then construct a number of approximate flux functions based on this strategy.

2. Background. Consider the Cauchy initial value problem for a system of m coupled first-order

differential equations in d space coordinates and time which represents a conservation law process. Let

u(x,t) : IR d x IR + _-} lR m denote the dependent solution variables and f(u) :JR m _-_ lR m×d the flux vector.

The prototype Cauchy problem is then given by

f u,, + _z, = 0
(2.1) u(x, 0)'= uo(x)

with implied summation on the index i. Additionally, the system is assumed to possess an scalar entropy
extension• Let U(u) : IR"_ _-_ IR denote an entropy function and F(u) : IR" _} lR d the entropy flux such

that in addition to (2.1) the following inequality holds

(2.2) V,t + Fiz, < 0

with equality for smooth solutions• In symmetrization theory for first-order conservation laws [11, 17, 12] ,

one seeks a mapping u(v) : IR m _-_ IR"_ applied to (2.1) so that when transformed

(2.3) u, vv,t + f/,'vv,z, -- 0

the matrix u,,, is symmetric positive definite (SPD) and the matrices t_ are symmetric• Clearly, if functions
,V

//(v) : lit "_ _-} ]R and 9Vi(v) : ]R m _-} IR can be found so that

(2.4)

then the matrices

(2.5)

_r = u., (e) _ = _

u,,=u.,v, f:,,=_,,,,,

are symmetric. Further, we shall require that/g(v) be a differentiable convex function such that

(2•6) lim /g(v)

so that U(u) can be interpreted as a Legendre transform of hi(v)

(2.7) U(u) = sup {v. u - U(v)}
v
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From (2.6), it follows that 3 v* 6 IR "_ such that v • u -/4(v) achieves a maximum at v*

(2.8) U(u) = v'. u - U(v') .

At this maximum u = Ll, v(v*) which can be locally inverted to the form v* = v(u). Elimination of v* in

(2.8) yields the simplified duality relationship

(2.9)

Differentiation of this expression

(2.10)

u(u) = v(u)- u - u(v(u)) .

U,u -- v T + uTv,u -- _,(,vV,u = v T

gives an explicit formula for the entropy variables v in terms of derivatives of the entropy function U(u)

(2.11) v T = U,, .

Using the mapping relation v(u), a duality pairing for entropy flux components is defined

(2.12) F_(u) = v(u). P(u) - Jr1(v(u)) .

Differentiationthen yieldsthe fluxrelation

(2.13) F, iu = vTf, u + (fi)Tv,u - P.'vv,u = vTfi,'u

and the fundamental relationship for smooth solutions

(2.14) v- (u,t + ff_,) = U,t + F_, = 0

which is exploited in nonlinear energy analysis.

Note that convexity of U(v) implies positive definiteness of u,v and hyperbolicity of (2.1) [8, 17], viz.,

that the linear combination f,u(n) = ni ftu has real eigenvalues and a complete set of real-valued eigenvectors

for all nonzero n E ]R d. This result follows immediately from the identity

(U,v)-I/2f, u(n)(U,v) 1/2 = (U,v)-I/2f, v(n)(u,v) -1/2

syrnm

which shows that f,u(n) is similar to a symmetric matrix.

2.1. Kinetic Boltzmann Entropies. Consider the particular case of moment systems derived from

the kinetic Boltzmann equation with Levermore's closure [16]. Boltzmann's equation is given by

(2.15) f(x,v,t),t + v" Vxf(x,v,t) = C(f)(x,v,t) ,

with f(x, v, t) a nonnegative density function, v E IR d the velocity, and C(f) : IR ,-> IR the collision operator.

NIoment systems are obtained by integrating in velocity space the Boltzmann equation over a vector re(v)

of linearly independant polynomials in velocity,

(2.16) (mf),t + (vi m f),z, = (mC(f)) ,

where (_) denotes the integral of a measurable function _b over velocity space. Without further assumption,

the fluxes (vi m f) cannot be expressed as functions of u = (m f). The closure of the system is performed by

assuming that the distribution function f has a prescribed form fs = fB (u) given by the minimum entropy

principle

(2.17) H[fB] = min{H[g] [ (gin) = u} ,

where H[g] = (g In g) is Boltzmann's celebrated H-function. Since H is a convex function the minimization

problem (2.17) is formally equivalent to

(2.18) /B = exp(v, m) ,



wherev -- v(u) serves as the Lagrange multiplier associated with the constraint (g m) = u or equivalently

under the closure assumption

(2.19) u ----(m exp(v(u), m)) .

The moment system (2.16) can now be rewritten as

(2.20) u,t + if,x, ----r(u) ,

where

(2.21) t"1 = (vi m exp(v(u) • m)) .

Observe that using the kinetic Boltzmann structure, we have that

(2.22) U(v) = (f) = (exp(v. m))

is a suitable conjugate entropy function and that

(2.23) U(u) -- ((v(u). m) exp(v(u)- m) - exp(v(u), m))

is the corresponding entropy function so that the duality relationship (2.9) holds.

The simplest example of a moment system is obtained by taking m(v) = (1, v, Ivl2/2) T corresponding

to mass, momentum, and kinetic energy. In this instance, the collision integral vanishes identically, r -- 0,

and (2.20) is the well-known system of Euler equations (5 moments) for a monotonic gas. More complex

systems with 10, 14 or 35 moments have been considered in the literature [16]. In Appendix A, we give the

corresponding Euler equations moment model for 7-law (polytropic) gases that is achieved by increasing the
dimension of the phase space to include internal energy I and utilizing the moments re(v, I) -- (1, v, Ivl2/2-t-

16)T for 5 ----(1/(7 -- 1) -- d/2) -1. In the case of the ?-law gas, one obtains a conjugate entropy function in
]Rd of the form

(2.24) U(v)= (c(%d) exp(v.m)) , c(7, d) >0

which is still compatible with the desired exponential structure. For brevity, we will omit constants such as

c(7, d) in our exponential form so that (2.22) may be regarded as an abstract form for (2.24) with suitably

chosen phase space. From (2.22) it is clear that

(2.25) L/,v,v = (m ® m exp(v • m))

is SPD, i.e. the following double contraction to a scalar is positive

(2.26) Uv,,vj zizj = ((m. z) 2 exp(v, m)) > 0 , Iz[ _ 0 .

Furthermore, U,u,u = L/-: is also SPD, hence U is also a convex function of u. Consequently every system,v,v
with the considered structure is hyperbolic symmetrizable and has a convex entropy U which is locally

dissipated. This technique provides one of the simplest proofs of convexity for entropy functions associated

with first order nonlinear conservation law systems derivable as moment closures of kinetic Boltzmann-like

equations. In the case of the Euler equations of gasdynamics, the reader should compare this technique with

the somewhat tedious proofs of convexity given in Refs. [12], [13], [9]. Finally, we mention the following

general result for kinetic Boltzmann moment hierarchical systems which is used in later development.

LEMMA 2.1. Generalized Convexity of Boltzmann Moment Conjugate Entropies. Let IN =

{0, 1,2,...} denote the set of nonnegative integers. All 2k derivatives of the kinetic Boltzmann moment

conjugate entropy (2.22)

ld(v) = (exp(v. m))



are SPD for k E _i

(2.27)
O2kU

0-__ > 0 ,
2k times

Iz) # o .

Proof. Successive differentiation of (2.22) 2k times yields the symmetric rank-2k x m tensor

O2k/4

(2.28) 0-_ (v) ----m(_.® m _®... ®__m exp(v • m)) ,
2k times

followed by contraction to a scalar by a nonzero vector z E IRm

02kLl

(2.29) 0v2k _ = ((m. z) 2k exp(v, m)) .
2k times

The moment vector m contains m linearly independent polynomials spanning IR m. The condition m(v)-z = 0

for fixed nonzero z and variable v would violate the assumption of linear independence, thus we conclude

that re(v), z # 0 a.e., namely, except at points of measure zero in the phase space Lebesgue integration. The

term exp(v • m) is also positive for finite argument values in the phase space integration, hence we conclude

for nonnegative powers 2k

(2.30) ((m. z) 2. exp(v, m)) > 0

and the stated lemma. •

2.2. The Eigenvector Scaling Theorem and Generalized Matrix Functions with Respect to

the Ao Inner Product. Next, we consider an important algebraic property of right symmetrizable systems

which is used later in the implementation of the DG scheme. Simplifying upon the previous notation, let

A0 = u,v, Ai = f_, Ai = AiA0 and rewrite (2.3)

(2.31) Aov,t + ,4_v,z, = 0 •

The following theorem states a property of the symmetric matrix .4i symmetrized via the symmetric positive

definite matrix ,4o-

THEOREM 2.2 (Eigenvector Scaling). Let A E IRn×n be an arbitrary diagonalizable matrix and S the
set of all right symmetrizers:

S = {B E ]Rnx_ I B SPD, AB symmetric}.

Further, let R E IR nxn denote the right eigenvector matrix which diagonalizes A

A = RAR -l

with r distinct eigenvalues, A = Diag(AlI,_x,,,,A2I,,_:x,,,_ .... ,Arl,-,,.xm.)- Then for each B E S there

exists a symmetric block diagonal matrix T = Diag(T,., t xmt, Tmax,,,2,..., Tm_xm.) that block scales columns
of R, [_ = R T, such that

B = hh T, A = RA[_ -1

which imply that

AB = bAR r.

Proof. Omitted, see [2]. •



This last formulastatesa congruence relationship since A is not generally orthonormal and A does not
represent the eigenvalues of AB. We shall refer to A as containing "entropy scaled" eigenvectors. Note that

we can consider scalar combinations of fi,i with the same scaling properties for arbitrary n E IR rn, i.e.

(2.32) ,iCn) -- ni _il = ACn) ACn)Arcn), Ao = ACn)/_rCn) .

Wavespeeds associated with the system (2.31) and the direction vector n are given by critical values of

the Rayleigh quotient

(2.33) _TA(n) ( (TR(n) A(n) RT(n) _ = lirA(n) 7/
(Tfi,0 _ = _. A(n) AT(n) _ r/. r/

_,0e_t m, 0=Re, I_l#0, ,

which are simply elements of A(n). For use in later developments, it is useful to define a matrix func-

tion fAo (fi') with respect to the Riemannian matrix -4o with critical values of the Rayleigh quotient given

by f(Aii),i = 1,... ,m. This matrix function takes a particularly simple form as given by the following
proposition:

PROPOSITION 2.3. Barth [2, 1]. Let rio denote the SPD right syrnrnetrizer of A such that A = Aft.o,

"_0 = h AT, and A = AAR -l. The generalized matrix flunction f Ao(_t) is symmetric and defined canonically
in terms of entropy scaled eigenvectors as

(2.34) fAo(,4) = RI(A)A T

where f(A) is per/ormed componentwise.

Proof. Assume the desired critical values f(A) and the Rayleigh quotient producing them

(2.35) 0Tf(A)rl = £TAI(A) Ar_ _T f_i°('4)_ _,r} • 1Rm, 0 = AS, 151_ 0.
_., _TAA T_ = CT_i0_ '

see also [2, 1]. •

In later sections, the generalized matrix absolute value function [A[,io will be required. Using Proposition
(2.3) stated above

(2.36) IAl.,io= AIAI AT

Finally, observe that using these scaled eigenvectors, A, we have the following equivalent representations 1
of fii and Ao that are used in later developments:

m rtt

(2.37) ,'t=_Aif/®fi , Ao =_-'_fi_ri ,
i=1 i=1

and

m

(2.38) IAlao = _ I,_,1_, ® _,
i----1

where ri denotes the i-th column of 1_.

ITheserepresentationsshouldnot beconfusedwiththespectraldecompositionofa matrixby orthonormaltransform.



3. DG Finite Element Method. Let 1_ denote a spatial domain composed of nonoverlapping elements

Ti, _ = UTi, Ti fl Tj = 0, i _ j and I n =]tn, tn+l[ the n-th time interval. It is useful to also define the

element set T = {Tl, T2,..., TIT ]} and edge set E = {el, e2,..., elz[}. To simplify the exposition, consider a
single variational formulation with weakly enforced boundary conditions. In the DG formulations (see [15, 3]

and references therein), functions are discontinuous in space and time, i.e.

For ease of exposition, we consider a spatial domain fl which is either periodic in all space dimensions or

nonperiodic with compactly supported initial data. Consider the first order Cauchy system

u,t+f i =0 inl_(3.1) u(x,0) 'z'= u0(=)

with A(n) = ni Ai and A(n) = ni -4i. The DG scheme with weakly imposed boundary conditions in time is

defined by the following stabilized variational formulation:

Find v h E V a such that for all w h E V a

(3.2) B(v h, wh)GAL = 0

where

.(v, w)cAL= f,. / (-.(v) w, - f'(v) wx,)d=

+/_ (w(t"_+'). u(v(t"_+')) - w(t_), u(vCt"_)))d=

w(.+,,.Ivy.
where h denotes a numerical flux function. Throughout, we consider numerical fluxes of the form

1
(f(v_; n) + f(v+; n)) - lhd(v_, v+; n)(3.3) h(v_, v+; n) = _

These fluxes are consistent with the true flux in the sense that f(v; n) = h(v, v; n).

3.1. DG Nonlinear Energy Analysis. Before presenting the nonlinear energy result, we recall some

supporting corollaries concerning entropy function/flux jump identities at space-time slab interfaces. Note

that throughout this section, we utilize the state-space parameterization

V(e) -- ,,(x_) + O [,,]_+_

(similarly across time slab interfaces) for use in state-space path integrations and the interface averaging

operator

v(=_) + v(=+)
(<_)):+-= 2

LEMMA 3.1. Interface Jump Identities. Barth [2, 1]Let Z(u), Z(v) : ]Rm _-_ ]R be twice differentiable

functions of their argument satisfying the duality relationship

(3.4) Z(u) + z(_) = z,v _ .

The following jump identities hold across interfaces

(3.5) [Z]I+ - [Z.,,]==+ v(x+) + (1 - O)[v]_=+. Z .... (V(O)) [v]==+ dO = 0

(3.6) [z]:+_- [Z,l:_+ v(=_) - o [,,]:+_.z,,,,,(v(o))[,,1: +- dO= 0.



Proof. Omitted, see [2, 1]. •

COROLLARY 3.2. Temporal Space-Time Slab Interface Identity. Barth [2, 1]. Let t± denote

a temporal space-time slab interface. The following entropy ]unction jump identity holds across time slab

interfaces

(3.7)

where

f. (c_]:+_-_(_+)[ul:+)_+1,_tvl:+Hl_o,o=o

(3.8) III[v]'d I _ _o _I1_o,_= 2(1-o) [v]tt_ • Ao(V(8)) [v]tt_ dodx >_0 .

COROLLARY 3.3. Spatial Space-Time Slab Interface Identity. Barth [2, 1]. Let x± denote a

spatial element interface. The following entropy flux jump identity holds across spatial element interfaces

i _+ 1 fl
(3.9) -/Iv >)__[r]:: +[F ]x_ T _+ ]0 (1 - 28) [v]: +. _iiCV(8))Iv]: + dO = 0 .

Note that in actual numerical calculations, it is desirable to use the variational form given by (3.2) since

integration by parts has been used to insure exact discrete conservation even with inexact numerical quadra-

ture of the various integrals. For analysis purposes, however, it is desirable to use the following equivalent

non-integrated-by-parts formulation:

Find v h E 12h such that for all w h E 12h

(3.10)

where

e(v h,Wh)GAL = 0

(3.11)

with

£ '"+ w(C_).[u],{ dx

+ . _[w]: + "hd(v(x-),v(x+);n)dxdt

where h d denotes the flux dissipation term incorporated into the total numerical flux.

THEOREM 3.4. DG Global Entropy Norm Stability (Nonlinear Hyperbolic System). The

variational formulation (3.10) for nonlinear systems of conservation laws with convex entropy extension and

symmetric mean-value flux dissipation

/ohsdMv(v-,v+;n) = IAIsMv[v]: +- , IAIsMv -- Ifi(v(O);n)tAodO

is entropy norm stable with the following global balance:

1_1( ]''[v]:_ 2''.Ao,n _-, _ -_Ax+ 2 ) LU(tN_,dx fnu(to)d x- + ,'rv]__'_l=l,,,×:.. + =
2 n=O - eE£

foI_ACn)l= 2 (1 - 0) (A+CV(0);n)A ° - _i-(v(1 - 0); n)A0) dO .
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0 tN I IN--1Tn byProof. Repeated here from [2, 1]. Construct the energy balance for the interval [t_, _ ] = "_,,=o-

setting w = v and evaluating the various integrals. Consider the time derivative integral

and combine with the jump integral across time slabs. From Corollary 3.2

I2 /o "vru, at dm+ vT(t__)[u]J_ dz = [UltZ_ dm+ III[v]',+ IIl_o,n •
n

When summed over all time slabs, the first term on the right-hand-side of this equation vanishes except for

initial and final time slab contributions. Next, consider the spatial operator term and apply the divergence

theorem

f,f. f, fo -(3.12) vTff.x, dx dt= F i dx dt = - IF(v; n)lx_ dz dt

where F(v; n) = ni Fi(v). Combining all the space terms and applying Corollary 3.3

IIOpa¢ e =_ . - [FCv; n)l: +_+ {(v)):_+. [f(n)], *+_ + _ [vl:_+" h a) dx dt

=j(/. _[v]:+_. hd+f ° (1-20) Ai(V(O))[v]:+_dO dzdt .

In summary, collecting all terms and summing over time slabs we have

B(V,V)CAL _ [Uh: dz+ IIl[vh+ 2-- _ Illao,n + I!_'p=e
n=O

f f Itltvl:-_+'= - Illaos, +//:pace
n=0

When written in this form, it becomes clear that a sufficient condition for energy stability is that for all time

intervals I '_

(3.13) II:p,,c, >_0

which servesas a design condition forthe fluxdissipation.

1 I

II_pace = j(/._ _ [v]Z*+" ( hd+ fO (1-20) Ai(V(O))[v]**+ d0)dxdt

= ft-._'_f_ 2 Iv]:-+ " ha+ fo (1-0',4i(V(0))Iv]: +- dO dxdt

1 /o'

The choice

(3.14)

yields

h d d _o 1= hSM v _ IA(V(0); n)lAo [v]:. +_dO

f, f? ' /o'zI:._ce= . _ [v]._ •2 ((1 - 0)A+(v(0);n)_o- 0k (v(o);n)_o) d0 [vl:+_d_at
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/01= . _[v]:_+.2(l-e)(._+(v(e);nho-,_-(v(1-e);nho)_[v]:+_a=at

= _ _ b,]:__. I_A(n)l[v]:_+ dzdt > 0

This completes the sufficient condition for energy decay in time. •

An important observation to be made concerning (3.13) and energy stability is that any flux dissipation h d
for which

(3.15) [v]+. d . h dhsMv < [v] +

is also energy stable with increased energy decay. This observation is used in later sections in designing

simplified flux functions for the DG method.

3.2. DG Nonlinear Energy Analysis for Kinetic Boltzmann Moment Closure Hierarchies.

In this section, we analyze nonlinear energy properties of the discontinuous Galerkin method assuming the
kinetic Boltzmann moment closure structure discussed in Sect. 2.1. Recall that in this framework

(3.16)

with conjugate entropy given by

(3.17)

u = (m exp(v • m)) , fi = (vi m exp(v • m))

H(v) = (exp(v. m)) .

Using these definitions, we briefy examine energy stability of the DG method for these moment closure
hierarchies.

THEOREM 3.5. DG Global Entropy Norm Stability of Kinetic Boltzmann Moment Closure

Hierarchies. The variational formulation (3.10)for nonlinear systems of conservation laws with convex
entropy extension and kinetic Boltzmann moment closure symmetric mean-value flux dissipation

foh_sMV(V-,v+;n) = IAIKsMV[V]:_- , IAIKsMV= (Iv.nlm®mexp(V(O).m))dO

is entropy norm stable with the following global balance:

(3.18)

with

Proof.

_1 111[vI,_ [1[_o,. + E([v]x_)lAi,ex_,_+_ + u(tN) dx = U(t°)dx
2 n=0 eEE --

By making the following generalizations

U(u) = ((v(u)" m) exp(v(u)- m) - exp(v(u), m))

Ao(v) = (m ® m exp(v • m))

.4(v; n) = ((v- n) m @ m exp(v • m))

.3,+(v; n)A ° = ((v. n)+m ® m exp(v, m)) ,



11

we can appeal once again to the space-time slab jump identities stated in lemma 3.1 and corollaries 3.7

and 3.3. Using these definitions and results, the proof of theorem 3.4 applies without alteration up to and

including the equation

I/_pace= . _[v]:+. hal+ (1-20) ft,(V(O)) [v]:+ dO dxdt

- ._ _[v];*_- o.4_(v(o)) ["1;_*dOd_dt

and the design condition

(3.19)

In the present case, the choice

n

I[_pace > 0 .

hd d rjo 1= hKSMV ---- @" nl m ® m exp(V(O) . m)) dO[v]: +(3.20)

is sufficient

/o//:pace = , _[v]: + -2 ((1- O) fi,+(V(O);n)_io-OA-(V(O);n)Ao) dO [v]__+- dxdt

= . _[vl: + .2 (1 -0) (A+(V(0);n)Ao - A-(V(1 -0);n)Ao) dO [v]: + dxdt

I;i'= . _ [v]__+- ]A(n)l[v]: + dxdt > 0 .

This completes the sufficient condition for energy decay in time for kinetic Boltzmann moment closure

hierarchies. •

4. Simplified Numerical Flux Formulas for the DG Method. The theoretical results of Sect. 3

provide the framework for constructing, analyzing, and proving energy stability for a number of simplified
numerical flux functions. This task is undertaken in the remainder of this section. We are unaware of any

previous DG anaiysis for systems (m > 1) of nonlinear conservation laws which rigorously establishes energy
stability for the fluxes considered here. Throughout, we use the notation ft. =/_ A/_T as defined earlier with

A -- diag()q,..., Am) assuming ordered entries )q < ... < A,,. For numerical fluxes such as the SHHLE and

SHLLEM flux, we also require that A_ and A,_ be distinct in order that the construction be well defined.

• Symmetric Lax-Friedrichs Flux (SLF)

1 (f(v_; n) + f(v+; n)) - _ max [U(V)]: +(4.1) hSLF(V_,V+; n) =

with

_max _--- sup (Am(V(O)))
0<0<1

• Symmetric Lax-Friedrichs Matrix Flux (SLFM)

(4.2)

with

1
1 (f(v_; n) + f(v+; n)) - _ h_LvM(v-, v+; n)hSLFM(V_ ,v+;n) =

1

h_LFM(V_,V+; n) = Amax _ (,40(V-) + .40(V+)) [V]: +
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and

,'_max ----- SLIp (,_rn(V(O)))
O<O<l

• Symmetric Harten-Lax-van Leer Flux (SHLLE)

1
1 (f(v_;n)+ f(v+;n))- _ hSaHLLE(V-,V+;n)hSHLLE(V_,v+;n) =(4.3)

with

and

-- 2_maxAmin
h_HLLE(V_, V+; n) -- Amax + Ami. [f(v; n)] + A-m-_ -- _-_mi. [u(v)]+)_max _min

Amax= sup max(0, Am(V(0))) , _min -_ inf min(0, Al(V(0))) .
0<8<1 0<O<l

• Symmetric Harten-Lax-van Leer Modified Flux (SHLLEM)

(4.4)
1 d

1 (f(v_ ;n) + f(v+; n)) - _ hSHLLEM (V_, v+;n)hSHLLEM(V_, V+; n) =

with

Amax + Ami.d (v_, v+; n) - n)]+_
hSHLLEM "_max _ _ If(v;

with

and

m-1 1

2Amax Amin _0_--£--_--_mi[U(V)]+_- _ f,(O) e, _ r, [v]+-dO
i=2

max(O, Am(O))+ min(O,_l(O)) .... 2 max(O, Am(O)) min(O, )q (O))
f,(O) = max(O,,Xm(O)) --__*(w) - max(O, Am(O))- min(O, A,(O)) - IA,(O)l

)kmax -_ sup max(0, Am(V(0))) , _min---_ inf min(0, Al(V(0))) .
O<O<l O<O<l

• Discrete Kinetic Symmetric Mean-Value Flux (DKSMV)

(4.5)

with

1 d
1 (f(v_;n)+ f(v+;n))- _ hDKSMV(V_,V+,n )hDKSMV (v_, V+ ; n) =

d (v_,v+;n) = 1
hDKSM v _ (IV-n] m ® m (exp(v_ • m(v)) + exp(v+ • m(v))) [v] +

1
= _ (IV-him® m exp(v_- m(v))) Iv] +

1
+_ (Iv- n Im ® m exp(v+ - m(v))) [v] +

Observe that explicit path 0-integration has been avoided in all these simplified fluxes (except correction

terms in SHHLEM). In addition, we have the following theorem:

THEOREM 4.1. Energy Stability of Simplified Flux Formulas The variational .formulation (3.10)

for nonlinear systems of conservation laws utilizing any of the candidate approximate numerical fluxes (_. 1),

(4.2), (4.3), (4.4), (4.5} is entropy norm stable in the sense of Theorem 3.4 or 3.5.

Proofs: Given on a cases-by-case basis.
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[v]:t _ fo1• hsMv(v_,v+;n) = [v]_ +- IA(v(o);n)l_io[v]**+_dO

= [v]:+_•h(v(o); n) IA(v(O))lhr(V(O);n) [v]:+_dO

/oslip ()_rn(V(0))) IV]:_ +" /_(V(0);n)/I_T(v(0);n)[v]:_ + dO

0<0<1

= sup (,_(v(o))) [v];_'2. Ao(V(o))[vl;*_ dO
0<0<1

= sup (_m(v(o)))[v]:+_.[u(v)]:*_
0<0<1

= Iv]: + "h_LF(V-,V+;n) •

Symmetric Lax-Friedrichs Matrix Flux (SLFM):

Iv]:+ _ fo _•hsMv(v_,v+; n) = [v]:+. IA(v(o);n)l_io[v]: + dO

= [v];_ +./_(V(0); n)IA(V(0))I hT(v(0); n) [v]:_+ dO

___sup (_m(v(o))) [vl:_+ •k(V(O);n)-_r(V(O);n)[,,];_+dO
0<0<1

= sup (_m(V(0))) [_F__+- AoCV(0))[v]:+_dO
0<0<1

Examining the scalar function

02Li +
g(o) _=[_]+_._io(V(o))[v]+_= [v]_+• _-(v(o))[v]_

differentiation yields

g ,, 0 4l_ += b-V(v(0))[M_,Iv]+_,Iv]_+,Iv]_+]

where the right-hand-sideterm denotes the rank-4 contraction to a scalar.

moments of the kineticBoltmann equation, we have from Sect. 2.1 that

G_4H,

_-iv4[z,z,z, zJ >0, Izl #0 .

Consequently, g(O) is convex for all 8,

g(O) _ (1-O)g(O)+Og(1) ,

so that

[v]:+. fo1

This yields

But for systems derived as

1 (iv]:+_._o/v_)fvl_++ iv]:+_._o(v+)[_]:+_)[v]:_+- .4o(V(O))[v]:_ + 88 < _ _ 2z_

1 Ao(V+)) [vl: += _ [v]:+. (Ao(v_)+

1 Ao(v+)) [v]: +[vl: +.h_Mv(v_,v+;n ) < sup (Am(V(0))) _ [v]: +'(Ao(v_)+
0<0<1
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= IriS+. h_LFM (V_ ,V+; n) •

Symmetric Harten-Lax-van Leer Fluxes (SHLLE) and (SHLLEM):

Our first task will be to prove that

[v]+ a n) < [v] + a• hsMv(v_, v+; _ • hSHLLEM(V_, V+; n)

followed by

[V]+- d n) < [v] +_ hgHLLE(V--,v+;n)• hSHLLEM(V_, V+; _ •

To do so, consider the symmetrization matrices ,4 and Ao written in the form (2.37)

rn

i:1 i=l

and the followinguseful2 x 2 matrix identityfor fi_E _t2×2 and Ao E IR2x2

max(0, A2) + min(0, AI) ft. _ 2 max(0, A2) min(0, AI) fi-o
(4.6) IAlao= max(O, A2) --min(O, At) m-_--_, A-_) -S: min(O, A1)

as can be easily verified by substitution. Generalizing to m x m matrices with )q < A2 < ... < Am and

A1 < A,,_, we can only represent the extremal values of Ai exactly using the (4.6) ansatz whenever A1 A,_ < O.

Consequently, we have a slightly more complicated identity for general m > 2

IAho =
max(0, Am) + min(0, Al) 2 max(0, Am) min(0, A1) - r.-1

max(O, Am) --min(O, A,) "_ - m_-0-_, A--_) -- min(0,A-tl) A° - E fi f, ® r,
i=2

with

2 max(0, Am) min(0, A1)
max(0, A.,)+ min(0, AI Ai -

fi = max(O, Am)-- min(O, A1 max(O, Am) - min(O, Ax) - lAi[

= max(O, Am) (Ai- - min(O, Al)) + min(O, A1) (A+ - max(O, Am)) > 0 .
max(O, Am) - min(O, A1)

d
Next, consider the local path integral form of hsM V

hdMv(V_, V+; n) = IA(v(O)lao[V]+_dO

l( ml )= foo a,(o)A(v(O);n)-a2(O)flo(V(O))- Ef,(0)fi®_i [v]+d0
i=2

with

max(O, Am(O)) + min(O, A, (8)) A,(O) - 2 max(O, Am(P)) min(O, A1)
fi(O) = max(O, Am(O)) --min(O, AI(O)) max(O, Am(O)) - min(O, Ax(O))

-IA,(0)I o

and

max(O, A,n(V(O))) + min(O, At (V(O)))

max(O, A.,(V(O))) - min(O, At (V(O))) '

2 max(O, Am(V(O))) min(O, A1 (V(O)))

max(O, Am(V(O))) - min(O, A1 (V(O))) "
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In addition,wewill definetheperturbedratios2

(max(0, AmCV(e))) + 6(0)) + (min(0, AI(V(8)) ) -- "}¢(8))

F1(0) = (max(0, Am(V(0))) + 6(8)) - (min(0, AI(V(0))) - 7(8)) '

2(max(0, A,,,(V(0))) + 6(8)) (min(0, A1(V(0))) - 7(8))

_2(0) = (max(0, A,_ (V(8))) + 6(8)) - (min(0, A1(V(0))) - 7(8))

for nonnegative bounded functions 6(0) Z 0 and 7(8) >_ 0, 0 E [0, 1]. Examination of the scalar quantity

II = fol[V] +. (_I(8)A(V(O);n)- a2(8)Ao(V(8)))[v] + dO

-  o'tV: Evl+-

= d8
reveals that II >_ 0 since for each component Ai of A, i = 1,..., m, (on-fitting the dependence on 0)

2 7 max(0, Am) (max(0, Am) + 6 - Ai)

(a, - a,) A, - (a2 - a2) ((max(O, Am) + 6) - (min(O, A1) - "y)) (max(O, A,,,) - min(O, )h))

2 6 min(O, A1) (min(O, A1) - 7 - Ai)
+

((max(0, Am) + 6) - (min(0, A1) - 7)) (max(0, Am) - min(0, A,))
>0.

Define infimum and supremum values of rain(0, At (8)) and max(0, Am (8)) respectively in the interval 8 E [0, 1]
as

Ama x _ sup max(O, Am(V(O))) , Amin = inf min(O, Al(V(O)))
0<0<1 0<O<l

and set e(0) and 5(0) as follows

e(8) = Amax -max(O, Am(V(8))) 2> 0 , 6(0) : min(O, Al(V(8))) --Amin ____0 .

This renders a1(0) and "5"2(0) now &independent, i.e.

Amax + Amin 2AmaxAmin
al - a= -

Amax -- Amin' Amax -- Amin

Consequently, for II > 0 and fi (0) _> 0 we have

[q+_.h_v_ = Iv]± (o,(8)_i(v(o);n)- _:(8)&(v(8)))[v]+d8
lm--I

--[v]+ " fo Z fi(8) ri ® ri [v] + d8
i=2

_<[v]+./o1(<(8>i(v(8);n)- a2(O)&(v(O)))[v]+d8
lm--1

-[v]+-f0 _ I,(8)e,_ _, [v]+ d8
i=2

= Iv] +- (al fol A(V(8,; n, [v] + dO-Y2 fl Ao(V(8,, Iv]+ dO)

2Our strategy will be to later define the nonnegative function 6(0) as the "gap" between local vadue of max(O, A,_(O)) and

the supremum value in the interval 0 6 [0,I] and similarly 7(0) will represent the gap between the rain(O,,_i(0)) and the infimum

value.
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lrn--1

-[v]+- " fo _ fi(O) ri _ ri Iv]+ dO
i=2

= [vl+_ tf(v;n)]+--Iv]+_ +_)
lm--1

-b']+-fo _ f,(o),_,®,_,[v]+ dO
i=2

b,l+_= . hSHLLEM

[v]+_ • (_, If(v; n)]_+ - [v]+_ •_2[u(v)]+_)<

[,,]+_= • hSHLL E •

which completes the proof for the SHLLE and SHLLEM fluxes. •

Discrete Kinetic Symmetric Mean-Value Flux (DKSMV):

[v]+. d = r/olhKSMV IV]_+" ([v.nlm®mexp(V(8).m(v)))[v]+_dO

= M .(Jv.nlm®m exp •re(v))dO)

Considering the scalar function

g(0) = exp (V(0)- m(v))

followed by twice differentiation

g"(0) = ([v]+_ • mCv)) 2 exp (V(0). m(v)) > 0 .

Hence, g(0) is yet another convex function so that

and finally

9(8) _ (1 -8)g(0)+00(1)

[V]+__ d f01
• hKSMV = Iv] +-" (1_-nl m ® m exp (V(O)- m(v))) [v] +_ dO

1

_<[vl+_•_(Iv ,+Im ® m (exp(v_ • m(v)) + exp(v+ • m(v)))) [v]_+

[,,]+ d= • hDKSM V •

5. Concluding Remarks. The analysis of this paper confirms energy stability for several numerical

flux functions that are of practical merit when used in computational fluid dynamics computations. Even

so, the theoretical framework developed here applies more generally and has application to many nonlinear

conservation law systems with entropy extensions that are not explicitly discussed here. In these settings,

the analysis presented may be invaluable because there may not be the large body of numerical methods

developed before hand to guide the development of new numerical fluxes, discretization, and stabilization.

Our general goal is to pursue these new problem areas in forthcoming work.

Appendix A. The exp(v, m(v,I)) Boltzmann Moment Structure for a 7-Law Equation of

State. For a 7-law (polytropic) gas, one has

P=(7-1)Pe, T=(7-1)e .
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(A.1)

with

Following Perthame [18], we consider the following Maxwellian in IRa for a "y-law gas:

P e--(Ju-v[212+lL)/T
f(p, u, T; v, I) = a(7, d) Td/2+I/6

and

1
1 d

'7-1 2

ot('7,d) = fm.a e-M_/2dv . f_+ e-l_ dI .

Using this particular form, Perthame shows that the Euler equations for a ?-law gas are obtained as the
following moments

(A.2) m(v,I) = (,vl2/_ + i6)

u=(mjr), f_=(vimf), ('>=el f (.)dIdv .
JFt d JR:t +

The nonobvious energy moment ]vJ2/2 + 16 was devised by Perthame rather than the more standard moment

[v]2/2 + I (see for example [6, 7]) in order that a classical Boltzmann entropy H(f) = flog jr be obtained.

Let us now verify that this choice of moments yields an exponential form for the conjugate entropy
function of the form

/d(v) = (jr) = (c(7, d) exp(v, re(v, 1))) , c(% d) > 0

which is sufficient for our purposes. Inserting the expression for _ into the temperature term appearing in
the Maxwellian yields

(A.3) jr(p,u,T;v,I) = 1_...._.p e_(lu_vl2/2+rn)/r
a(7, d) Tl/("_-1)

and compare this with the expression exp(v • m) obtained using the entropy function 3

U(u) - ps
(? -- I)

so that

and finMly

v=uT =
,U -'--+7--I i--1

T

= _ 7--1

T 1

T

exp(v • m(v, I)) = e -'YI('y-1) P e -(I"-'_t=I2+I')IT
TZ/(._-l)

Comparing with (A.1), we obtain the exponential form for the conjugate entropy function

with

L((v) = <jr> = (c(% d) exp(v, re(v, I))>

e_/(_-l)
c(7, d) - > 0 .

a(7, d)

aThe choice of 1/(q, - 1) scaling of the entropy function comes from our desire to match the p/T 11(_-1) term appearing in
Perthame's Maxwellian


